A Statistical Approach to Adaptive Problem-Solving for Large-Scale Scheduling and Resource Allocation Problems Steve Chien*, Jonathan Gratch*, and Michael Burl* *Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91109-8099 {chien,burl}@aig.jpl.nasa.gov ⁴BeckmanInstitute University of Illinois 405 N. Mathews Av., Urbana, II. 61801 gratch@cs.uiuc.edu #### Abstract (Durwork focuses upon development of tech niques for choosing among a set of alternatives in the presence of incomplete information and varying costs of acquiring information. In our approach, we model the cost and utility of various alternatives using parameterized statistical models. By applying techniques from an are a of statistics called parameter estimation, statistical models can be inferred from data regarding the utility and information cost of each of the various alternatives. These statistical models can then be used to estimate the utility and cost of acquiring additional information and the utility (If selecting specific alternatives from the possible choices at hand. We apply these techniques to adaptive problem solving, a technique in which a systemautomatically tunes various control pa-I ameters on a performance element to improve performance in a given domain. We presentem pirical results comparing the effectiveness of these techniques on speedup learning from a real world NASA scheduling domain and schedule quality data from the same real world NASA scheduling domain. #### 1 INTRODUCTION In machine learning and basic decision making in A1, a system must often reason about alternative courses of action in the absence of perfect information. In many cases, acquiring additional informationmay be possible, but has associated with itsome cost. A central problem of interest to A1 researchers, and statisticians is that of designing strategies to balance the cost of acquiring additional information against the expected utility of the information to be acquired. For example, when choosing among a set of actions, one could gather further information which might help a make your decision (at some cost), or one might simply make a decision. If one decides to gather further information, which information would be the most useful? When one wishes some sort of statistical guarantees on the (local) optimality of the choice and/or the guarantee of rationality, a statistical decision (Ilcor('(it') framework is useful. To summarize, this problem of decision making with incomplete information and information costs can be analyzed in two parts: - Al: How much information is enough? At what point do we have adequate information to select one of the alternatives? - A2: If one wishes to acquire more information, which information will allow us to make the best possible decision at hand while minimizing information costs? Possible solutions to this decision making quandary dependenthe context in which the decision is being made. This paper focuses upon the decision making problems involved in adaptive problem solving. Adaptive problem solving occurs when a system has a number of control points which affect its performance over a distribution of problems. When the system solves a problem with a given Set of settings for control points, it produces a result which has a corresponding utility. The goal of adaptive problem solving is: given a problem distribution, find the setting of control points which maximizes the expected utility of the result of applying the system to problems in the distribution. More rigorously, the adaptive problem solving problem cambe describes as follows. Given a flexible performance element PE with control points CP₁... CP₁₀ where each control point CP₁ corresponds to a particular control decision and for which there is a set of alternative decision methods $M_{i,1}...M_{i,k}$ a control strategy is a selection of a specific method for every control point (e.g., STRAT: $< M_{1,3}, M_{2,6}, M_{3,1},...>$). A control strategy determines the overall behavior of the scheduler. It may effect properties like computational efficiency of the quality of its solutions. 1 Let PE(STRAT) be the problem solver operating under a particular control strategy. The function U(PE(STRAT), d) is a real valued utility function that is a measure of the goodness of the behavior of the scheduler over problem a problem distribution D, find STRAT so as to maximize the expected utility of PE. Expected utility is defined formally as: $$\sum_{d \in D} U(PE(STRAT), d) \times probability(d)$$ For example, in a planning system such as PRODI-GY [Minton88], when planning to achieve a goal, control points would be: how to select till operator to use to achieve the goal; how to select variable bindings to instantiate the operator; etc. A method for the operator choice control point might be a set of control rules to determine which operators to use to achieve various goals plus a default operator choice method. A strategy would be a set of control rules and default methods for every control point (e.g., one for operator choice, one for binding choice, etc.). Utility might be defined as a function of the time to construct a plan, cost to execute the plan, or some overall measure of the quality of the plan produced. Given the context of adaptive problem solving, the question A1 from above "how much information is enough" can be further elaborated. In adaptive problem solving, the expected utility can be interpreted **as** average **utility** from the performance element on a per problem basis. This means that "how much information is enough" generally depends upon the amortization period for learned knowledge, the relative cost of acquiring additional information and interactions between successive choices. These issues are the focus of other work [Gratch and DeJong 93], and are not directly addressed by the work described in this abstract. Question A2 from aim\'c is "findwhich information will allow us to make the best possible decision at handwhile minimizing information ((IsIs". This question can be east in two ways: 1) for a given amount of resources, which information should I get to maximize the expected utility of of the outcome my decision; and 2) given that I want to have a certain confidence level in the goodness of my decision (e.g., local optimality), how can I achieve this while expending the least resources possible. This abstract focuses on question A2, namely: "find which information. Will allow us to make the best possible decision athand while minimizing information costs". Specifically, our approach draws upon techniques from statistics in the of area of" parametric statistical models to model the uncertainty in utility and information cost estimates. In parametric statistical models, one presumes that data is distributed according to some form of model (c...\ \., the normal distribution, the poisson distribution, etc.). This distribution can be described in terms of a fixed Set of parameters (such as mean, variance, etc.). If one can inferthe relevant parameters for the distribution underlying the data (s 0 called parameter estimation), then because the uncertainty in utility estimates is explicitly modelled in the statistics, three types of questions regarding utility can be answered: - B1: which alternative has the highest expected utility; - B2: how certain are we of this ranking of the alternatives; and - B3: how much is this uncertainty likely to change if we acquire additional information. Correspondingly, the same approach can be used in modelling the cost distribution. Hence the expected cost of acquiring additional information can also be estimated. of course, the accuracy of all of these estimates is dependent upon the goodness of fit of the parametric model used to model the uncertainty and cost estimates. Generally, we use the normal (gaussian) distribution model as our parametric model. Fortunately, the normal distribution has the strong property that it is a good approximation to many forms of distributions for reasonably large sample sires (due to the Central Limit Theorem). ^{1.} Note that a method may consist of smaller elements so that a method may be a set of control rules or a combination of heuristics. Note also that a method may also involve real valued parameters. Hence, the mumber of methods for a control point may be in finite, and there may be an infinite number (11 strategies. Thus, using techniques from parameter estimation and analysis of the data, we can answer questions B1, B2, & B3 from above regarding utility and estimate expected cost of information. The remaining task is to apply decision theoretic methods to determine the answers to questions A1 and A2 from this information. Working towards this goal we have developed two general approaches to addressing this problem: dominance indifference and expected loss. The first set of methods, called interval based methods, involve quantifying the uncertainty in competing hypotheses by computing the statistical confidence that one hypothesis is better than another hypothesis. Once this confidence has been computed, the system attempts to allocate examples to efficiently show that one hypothesis dominates all the other hypotheses with some specified confidence. These methods also rely upon an indifference parameter, which allows it to show that the preferred hypothesis is quite similar in expected performance to another hypothesis with some confidence, thus making the preferred hypothesis is acceptable. ity from adopting option H_i over option H_j with choice. More specifically, the expected loss of utilby the lost utility with respect to the alternative The second set of methods uses the decision theorethypotheses with similar means and low variances specified threshold. This approach has the added pected loss approach, the system acquires information until the expected loss is reduced below some where $u_j > u_i$, of $P_{uiuj}(u_i, u_j)$ ($u_j - u_i$). In the exthe integral of $\mathbf{u}_i \in \mathbb{U}_i, \mathbf{u}_j \in \mathbb{U}_j,$ over all the regions corresponding utility distributions U_i and U_j to be ity that a less preferable decision is made weighted Russell & Wefald 93], which measures the probabilic concept of expected loss [Russell & Wefald 89, (e.g., it recognizes indifference without a separate indifference parameter). benefit of not attempting to distinguish among two For both the interval based and expected loss approaches, when selecting a best hypothesis, one must base this selection upon comparisons of the utility of the "best" hypothesis to the other possible hypotheses. Because there are multiple comparisons, the estimate for the overall error (or confidence) in a conclusion of selection of a best hypothesis, is based upon multiple smaller conclusions. For example, if we wish to show that H3 is the best choice among 111, 112, 113, 114, and 115, in the interval based approach, we might show that 111 and 113 are indifferent, that 113 dominates 112, 113 dominates 114, and 113 dominates 115. Thus if we wish a confidence level of 95%, with a straight sum error model and equal allocation of error, each of the individual hypotheses would need a 98.75% confidence level (since 4 x 1.25%: 5%). the overall error estimate, based upon parameters of ditional examples to compare relative utilities of particular error model used. However, sampling adhave implemented default strategies of equal allorying cost. Thus, in many cases, it may be desirable ple from different distributions can have widely vathe particular distribution. Also, selecting an examvarious alternatives can have varying effect upon The exact form of the relationship depends upon the erring the highest ratio of marginal benefit to maral cost is estimated using estimated parameters on ple mean and variance do not change). The marginin the case of the normal distribution, that the sammate) due to acquiring another sample presuming in the error estimate (or increase in confidence estiginal benefit is estimated by computing the decrease to compare two competing hypotheses. The marginal cost of sampling to extract another data point the system estimates the marginal benefit and marwhich allocate the error unequally. In this approach, cation of errors, we have also developed algorithms to allocate the error estimates unequally. While we ginal cost. The system then allocates additional examples prefthe cost distribution for the relevant hypotheses. that the statistical parameters remain constant (e.g., bination of expected losses is used. also varies. Thus, allocating examples to the pairthe exact parameters of the utility distributions, alover each of the other H3s. Again, depending upon of the pair-wise expected losses from choosing Hi proach, the expected loss of choosing Π_i is the sum For the expected loss approach, a comparable comsum of expected losses. loss computations will have varying effects on the locating examples to each of the pair-wise expected all, there are four new algorithms, interval based sampling to allocate sampling resources. Thus, in ginal cost and estimated marginal benefit pected loss algorithm which uses the estimated mar-Consequently, we have also implemented an exwise computations unequally can be advantageous. with the interval-based case, the cost of sampling Additionally, exactly as equalerrorallocation (S'1'01'1), interval-basedunequalerrorallocation (STOP2), expected loss equal allot.aliott (1 ll 1), and expected loss unequal allocation (El 2)². # 2 EMPIRICAL PERFORMANCE EVALUATION We now tun to an empirical evaluation of the hypothesis selection techniques. This evaluation lends support to the techniques by: (1) using synthetic data to demonstrate that the techniques perform as predicted when assumptions are met and (2) using a real-world hypothesis selection problem to demonstrate the robustness of the approaches. As the interval-based and expected 10ss approaches use, different parameters which are incomparable, we first test the interval-based and expected 10ss approaches separately and then compare them headto head in a real-world comprehensive test. #### 2.1 SYNTHETIC DATA Synthetic data 15 ^U sed to show that the techniques perform as expected when the underlying assumptions are valid. 1'01 interval-based approaches we show that the technique will choose the best hypotheses, or one & close, to the best, with the requested probability. For the expected loss approach we show that the technique will exhibit no more that the I equested level of expected loss. The statistical ranking and selection lilt.latule uses a standard class of synthetic problems for evaluating the **statistical** error **of** hypothesis evaluation techniques called the *least favorable configuration* of the population means [1kdllmfc.154]. This is a parameter configuration that is most likely to cause a technique to choose a wrong hypothesis (one that is not e close) and thus provides the most severe test of the technique's abilities. Under this configuration, k-1 of the hypotheses have identical expected utilities, p, and the remaining hypothesis has expected utility μ 1 c.. The last hypothesis has the highest expected utility and should be chosen by the technique. The costs and variances of all hypotheses all equal. We test each technique on the least favorable configuration under a variety of control parameter settings. The least favorable configuration becomes more difficult (requires more examples) as the confidence γ^{s} , the number of hypotheses k, 01 common 2. For details of these algorithms see [(lien et al 94). utility variance o^2 , increases. It becomes easier as the indifference inter val ε , increases. In the standard methodology a technique is evaluated varying values for k, γ^* , and ok. The last term combines the variance and indifference interval size into a single quantity which as it increases trakes the problem more difficult. 1'01 Our experiments, n_0 is set to se ven, μ is fifty, o^2 is sixty-foul, and all other parameters are varied as indicated in the results. All experimental trials are repeated 5000 times to obtain statistically reliable results. The lessuits from these experiments, in Table 1 below, show that as the requested confidence increases, the S'1'01'1 algorithm correctly takes more training examples to ensure that the requested accuracy level is achieved. The expected 10ss approach ELL was also evaluated in the least favorable configuration to test the algorithms ability to bound expected 10ss. ELL was tested or various 10ss thresholds, H^* , over this problem. For this evaluation, μ is fifty, all hypotheses share a common utility variance of sixty-four, and ϵ is two, k: 3, S,10, Π^* =1.0, 0.75, 0.5, 0.25. The sample size results and observed 10ss values ate. summarized below in Table 1. The results illustrate that as the loss threshold is lowered BL Itakes more training examples to ϵ usure the expected 10ss remains below the threshold. Again, all trials are repeated 50(K) times. | $\gamma^{\dagger:}$ | STOP1 | }]}* | EL1 | |---------------------|---------|-------|-----------------| | 0.'/5 | 1?.53 | 1,0 | 307 | | | (().85) | | (().67) | | 0.90 | 1976 | 0."/5 | 332 | | | (().93) | | (0.67) | | (),95 | 2596 | 0.5 | 399 | | | (().95) | | (o. 1"/) | | | | 0.25 | 49 -/ | | | | | (().()7) | Table 1:1 least Pavorable Configuration Results Both systems satisfied their statistical requirements. III each configuration STOP1 selected the correct hypothesis with at least as much confidence as requested. The expected loss exhibited by ELA was 3. Another important question with the interval-based approach is its efficiency when all hypotheses are indifferent to each other. 1 (valuations in this configuration give comparable efficiency to the least favorable configuration, but space precludes presentation of those results. no greater than the loss threshold. As expected the number of examples required increased as the acceptable error level or loss 1IIICS11OM decreased. The number of examples required by the two techniques should not be compared directly as each algorithm is solving a different task. Laterwe will discuss the relationship between the efficiency of the applications. #### 2.2 NASA SCHEDULING DATA The test of real-worldapplicability is based on data drawn from an actual NASA scheduling application. This data provides a strong test of the applicability of the techniques. All of the statistical techniques make some form of normality assumption. However the data in this application is highly non-normal-in fact most of the distributions are bi-modal. This characteristic provides a rather severe test of the robustness of the approaches. Our particular application has been adaptive learning of heuristics for a lagrang ian relaxation [Fisher81] scheduler developed by Col in Bel I called 1,1<-26 [Bell93] to schedule communications between NASA/JPL antennas and low earth orbiting sate.llite.s. 1,1<-26 formulates the scheduling problem as an integer linear programming problem and a typical problem in this domain has approximately 650 variables and 1300 constraints. The goal of time e-valuations was to choose a heuristic that solved scheduling problems quickly on a verage. This is easily seen as a hypothesis evaluation problem. Each of the heuristics corresponds to a hypothesis. The cost of evaluating a hypothesis over a training example is the, cost of solving the scheduling problem with the given heuristic. The utility of the training example is simply the negation of its cost. In that way, choosing a hypothesis with maximal expected utility corresponds to choosing a scheduling heuristic with minimal average cost. Application of the COMPOSER method of adaptive problem solving [Gratch93] to this domain has produced very promising results. Forone version of the problem, the goal is to learn heuristics to allow for faster construction of schedules. For this application [Gratch et al. 93a, Gratch & Chien 93], learned heuristics produced the leasuits of: 50% reduction in CPU time to construct a schedule for solvable problems, and a 15% increase in the number of solvable problems within resource bour Ids. 1'01 a second version of the problem, the goal is to learn heuristics to choose goal constraints to relax when it appears that the problems posed to the scheduler is unsolvable. In this application, the utility is negative the number of constraints relaxed in the final solution. Preliminary tests showed a range from -681 to -35 in average utility in the control space, with an average utility of -13-/. Over 6 trials, COMPOSER picked the best strategy in every trial. We are currently in the process of enriching the heuristic space. for this application. Currently, we are using data from this scheduling application to further test our adaptive problem solving techniques. The scheduling application involved sever at hypothesis evaluation problems, four of which we, use in this evaluation. Each problem corresponds to a comparison of some set of scheduling heuristics, and contains data on the heuristics' performance over about one thousand scheduling problems. An experimental trial consists of executing a technique over one of these data sets. Each lime a training example is to be processed, some problem is drawnrandomly from the data set with replacement. The actual utility and cost values associated with this scheduling problem is then used. As in the synthetic data, each experimental trial is repeated 5000 times and all reported le suits are the average of tile se, trials. We ran the interval-based hypothesis selection method (S'1'01'1), the costsensitive interval - based method (S'1'01'?), the COMPOSER approach, and an existing statistical technique by Turnbull and Weiss [Tumbull& Weiss 87] over the fourscheduling data sets, in each case the confidence level was set at 95%, and n_0 set to fifteen. These results, shown in Table ?., show that the interval-based techniques significantly outperformed the Turnbull and COMPOSER techniques and that S'1'01'2. slightly outperformed S'1'01'2. We also ranthe expected 10ss techniques 1 \(\frac{1}{3}\).1 and 1 \(\frac{1}{3}\).2 (cost sensitive) over the four scheduling data sets. In each case the 10ss threshold was set at three. and n_0 was fifteen. Table 3 summarizes the. results along with the number of hypotheses and the relative difficulty (o/\varepsilon) of each data set. These results in Table 3 show that the expected 10ss approaches bounded the expected 10ss as predicted. #### 2.3 Comparing STOP1 and EL 1 It is difficult to directly compare the performance of S'1'()]'] and E[],] as the algorithms are accomplishing different tasks. S'1'01'1 is attempting to identify | | Parameters | | STOP 1 | STOP2 | TURNBULI | COMPOSER | | |-----|------------|------|--------|----------------|---------------|-----------------------|-------------------| | | k | γ* | σ/ε | 81OF] | 310/2 | TORRIBOLI | COMPOSIN | | D1 | 3 | 0.95 | 34 | 908(1.()()) | 648 (1 .00) | ?6,691 (1 ,00) | 78 (1 ,00) | | 1)2 | ? - | 0.95 | 34 | 74 (1 .00) | 76(1.00) | 13,066 (1 .00) | 346 (1.00) | | D3 | 7 | 0.95 | 14 | 2,5-/'1 (0.94) | ?,153 (0.93) | 94,308 (1 .00) | 2,456 (0.91) | | 1)4 | 7 | 0.95 | 11 | 7,972 (0.96) | 7,621(0.94) " | 8-/,35-/ (1.00) | ?1,31? (0.89) | '1 able 2: Estimated expected to talnumber of observations for scheduling data. Achieved probability of a correct selection is shown in parenthesis. | | Paran ters | | B1.1 | | 19.2 | | |------|------------|------|--------------|------|--------------|------| | | <i>k</i> | 11* | Observations | Loss | Observations | Loss | | D | 3 | 3.() | 78 | 0.1 | 49 | 1.0 | | 1)2 | ? | 3,() | 30 | 1.8 | 30 | 1.8 | | 1)3 | 7 | 3.() | 335 | 3.0 | 177 | 3.9 | |])4 | 7 | 3.0 | 735 | 1.7 | 283 | 2.2 | '1 able 3:1 is timated expected total number of observations and expected 10ss of an incorrect selection for the scheduling data. a nearly optimal hypothesis with high confidence while 1 (1.1) is attempting to minimize, the cost of a mistaken selection. If the goal of the task is to identify the best hypothesis then clearly STOP1 should be use. If the goal is to simply improve expected utility as much as possible, either could be used and it is unclear which is to be preferred. This section attempts to assess this question cm the NASA scheduling domain. We run each algorithm under a variety of parameter settings and compare the best performance of each algorithm. To directly compare S'1'01'1 and EL1, we ran a comprehensive adaptive scheduling test. In this test, S'1'01'1 and EL1all were given the task of optimizing several control parameters of an adapt i ve scheduler, with the. goal of speeding up the schedule generation process. This task corresponds to the quential solution of the problems D1 through D4 posed in the scheduling test (for more details on this application domain see [Gratch et al. 93]. In this test the STOP1 al gorithm was run with confidence lev- els γ^4 = 0.75,0.90,0.95 and an indifference level of 1.0, and EL1 was run with loss bound L= 5, 1,().5. The best settings found and averaged results resulting from 1000 runs are shown below in Table 4. | | (CPU | Examp. | Utility | |--------------------------|---------------|--------|---------| | \$']'()]'1
(0.75,1.0) | Days)
1.94 | 4199 | 17.1 | | EL1(0.5) | 1.84 | ?630 | 17.3 | Table 4: Direct Comparison of STOP1 and EL1 These results show that the two algorithms produce roughly comparable utilities, the difference in utilities is smaller than the indifference interval specified to STOP1. I lowever, the STOP1 algorithm requires nearly twit.c. the examples cm average to achieve this utility. While it is difficult to generalize this result to other applications, this and other empirical results has suggested to us that the expected 10ss approach is more efficient at the task of improving expected utility. ## 3 CONCL,1 IS1ON This paper has described techniques for choosing among a sc.(of alternatives in the presence of incomplete information and varying costs of acquiring information. In our approach, we model the cost and utility of various alternatives using parameterized Statistical models. By applying techniques from an area of statistics called parameter estimation, statisticalmodels can be inferred from data regarding the utility and information cost of each of the various alternatives, '1' hese stat istical models can then be used to estimate the utility and cost of acquiring additional information and the utility of selecting specific alternatives from the possible choices at hand. We apply these techniques to adaptive, problem solving, a technique in which a system automatically tunes various control parameters on a performance element to improve performance in a given domain, We present empirical results comparing the effectiveness of these techniques on two applications in a real- world domain: speedup learning from a realworld NASA scheduling domain and schedule quality data from the. same. real- work] NASA scheduling domain. ### Acknowledgements Portions of this work were performed by the Jet Propulsion 1 aboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration and portions at the. Beckman Institute, University of Illinois under National Science Foundation Grant NSI-1RI-9?-09394. #### References - [Bell93] C. H. Bell, "Scheduling Deep Space Network Data Transmissions: A Lagrangian Relaxation Approach," Proceedings of the S1'1 E Conference on Applications of Artificial Intelligence 1993: Knowledge-based Systems in Aerospace and Industry, Orlando, FL, April 1993, pp. 330 340. - [1 fisher8 1] M. Fisher, "The Lagrangian Relaxation Method for Solving Integer Programming Problems," *Management Science* 27, 1 (1981), pp. 1-18. - [Gratch93] J. Gratch, "COMPOSER: A Decision-theoretic Approach to Adaptive Problem Solving," Technical Report UIUCDCS- R- 93-1806, Department of Computer Science, University of Illinois, Urbana, IL, May 1993. - [Gratch et al. 93a] J. Gratch, S. Chien, and G. DeJong, "1 carning Search Control K nowledge for Deep Space Net work Scheduling," Proceedings of the Tenth International Conference on Machine Learning, Amherst, MA, Jane 1993, pp. 135-14?. - [Gratch c(al. 93b] J. Gratch, S. Chien, and G. DeJong, "1 .earning Search Control Knowledge to Improve Schedule Quality," Proceedings of the of the 1JCA193 Workshop on Preduction Planning, Scheduling, and Control, Chamberry, France, August 1993, - [Chienet al. 94] S. Chien, J. Gratch, and M. Burl, "On the 1 ifficient Allocation of Resources for }1 ypothesis Evaluation in Machine Learning: A Statistical Approach," For theoming JPL Technical Report, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 1994. - [Gratch & Chien 93] J. Gratch and S. Chien, "Learning Search Control Knowledge, for the, 1 Deep Space Network Scheduling Problem: Extended Report and Guide to Software," Technical Report UIUCDCS-R-93 1801, 1 Department of Computer Science, University of Illinois, Urbana, II., January 1 9 9 3. - [Gratch & DeJong 93] J. Gratch and G. DeJong, "Rational Learning: A Principled Approach to Balancing Learning and Action," Technical Report UIUCDCS R- 93-1801, 1 Department of Computer Science, University of Illinois, Urbana, II., April 1993. - [Russell & Wefald 89] S. Russelland E. Wefald, "On Optimal Game Tree Search using Rational Meta-Reasoning," Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, MI, August 1989, pp. 334340. - [Russell & Wefald 91] S. Russell and E. Wefald, "Do the Right Thing: Studies in Limited Rationality," MIT Press, Cambridge, MA 1991. - [Turnbull & Weiss 87] A class of sequential procedures for k-sample problems concerning normal means with unknown unequal variances, in **Statistical Ranking and** Selection, **Three Decades** of **Development**, R. Haseeb (ed.), American Sciences Press, Columbus, OH, 1987, pp. 225-240.